Search results for "Molecular electronics"

showing 10 items of 59 documents

Materials for molecular electronics and magnetism

2021

Functional molecular materials exhibiting, in particular, electrical, magnetic or optical properties have been an active focus of research over the last 50 years. These materials have been a source of inspiration in two interrelated areas of research, namely, molecular electronics and molecular magnetism, with important implications in biomedical areas. This themed issue highlights recent progress and perspectives in these important areas of materials science. The issue covers topics from the chemical design and manipulation of novel molecular materials with unprecedented control over their properties, even at the single-molecule level, to exciting applications of these special molecular sy…

BioelectronicsMaterials scienceMagnetismMaterials ChemistryMolecular electronicsNanotechnologyGeneral ChemistryMolecular systemsMolecular materialsChemical designJournal of Materials Chemistry C
researchProduct

Growth of immobilized DNA by polymerase: bridging nanoelectrodes with individual dsDNA molecules.

2011

We present a method for controlled connection of gold electrodes with dsDNA molecules (locally on a chip) by utilizing polymerase to elongate single-stranded DNA primers attached to the electrodes. Thiol-modified oligonucleotides are directed and immobilized to nanoscale electrodes by means of dielectrophoretic trapping, and extended in a procedure mimicking PCR, finally forming a complete dsDNA molecule bridging the gap between the electrodes. The technique opens up opportunities for building from the bottom-up, for detection and sensing applications, and also for molecular electronics.

Bridging (networking)Sensing applicationsFOS: Physical sciencesNanotechnology02 engineering and technologyDNA-Directed DNA PolymeraseCondensed Matter - Soft Condensed Matter03 medical and health sciencesMoleculeNanotechnologyGeneral Materials SciencePhysics - Biological PhysicsElectrodesPolymerase030304 developmental biologyDNA PrimersFluorescent Dyes0303 health sciencesbiologyImmobilized DNAta114OligonucleotideChemistryta1182Molecular electronicsDNA021001 nanoscience & nanotechnologyCondensed Matter - Other Condensed MatterBiological Physics (physics.bio-ph)Electrodebiology.proteinSoft Condensed Matter (cond-mat.soft)Gold0210 nano-technologyNucleic Acid Amplification TechniquesOther Condensed Matter (cond-mat.other)Nanoscale
researchProduct

Donor-acceptor substituted polyenes : orientation in mono- and multilayers

1992

Large molecules containing different chemical units whose interactions within the molecule result in new macroscopically observable effects, have become increasingly important.The organization of molecules of this type in ordered structures leads to functional molecular materials.Their use in molecular electronics requires that the units exhibit specific electronic properties. Recently, we reported on the intramolecular energy transfer through terminally substituted conjugated polyenes. An intramolecular electron transfer within donor-acceptor substituted polyenes can be achieved by introducing suitable terminal groups.

ChemistryPolyene SubstitutionsreaktionMechanical EngineeringMolecular electronicsNonlinear opticsConjugated systemPolyene540Orientation (vector space)Electron transferchemistry.chemical_compoundCrystallographyMechanics of MaterialsComputational chemistryIntramolecular forceMoleculeGeneral Materials Science
researchProduct

Ultrafast dynamics of halogens in rare gas solids

2007

We perform time resolved pump-probe spectroscopy on small halogen molecules ClF, Cl2, Br2, and I2 embedded in rare gas solids (RGS). We find that dissociation, angular depolarization, and the decoherence of the molecule is strongly influenced by the cage structure. The well ordered crystalline environment facilitates the modelling of the experimental angular distribution of the molecular axis after the collision with the rare gas cage. The observation of many subsequent vibrational wave packet oscillations allows the construction of anharmonic potentials and indicate a long vibrational coherence time. We control the vibrational wave packet revivals, thereby gaining information about the vib…

Coherence timeQuantum decoherenceChemistryPhononWave packetAnalytical chemistryGeneral Physics and AstronomyMolecular electronicsMolecular electronic transitionExcited statePhysics::Atomic and Molecular ClustersPhysical and Theoretical ChemistryAtomic physicsCoherence (physics)Phys. Chem. Chem. Phys.
researchProduct

Disorder and dephasing effects on electron transport through conjugated molecular wires in molecular junctions

2012

Understanding electron transport processes in molecular wires connected between contacts is a central focus in the field of molecular electronics. Especially, the dephasing effect causing tunneling-to-hopping transition has great importance from both applicational and fundamental points of view. We analyzed coherent and incoherent electron transmission through conjugated molecular wires by means of density-functional tight-binding theory within the D'Amato-Pastawski model. Our approach can study explicitly the structure/transport relationship in molecular junctions in a dephasing environmental condition using only single dephasing parameter. We investigated the length dependence and the inf…

Condensed Matter - Materials ScienceMaterials scienceCondensed Matter - Mesoscale and Nanoscale Physicsta114Field (physics)Condensed matter physicsDephasingMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesThermal fluctuationsConductanceMolecular electronicsdephasingConjugated systemCondensed Matter PhysicsCondensed Matter::Mesoscopic Systems and Quantum Hall EffectElectron transport chainElectronic Optical and Magnetic MaterialsMolecular wireelectronic transportMesoscale and Nanoscale Physics (cond-mat.mes-hall)grafeeni
researchProduct

Nanoparticles at fluid interfaces.

2017

Nanoparticles at fluid interfaces are becoming a central topic in colloid science studies. Unlike in the case of colloids in suspensions, the description of the forces determining the physical behavior of colloids at interfaces still represents an outstanding problem in the modern theory of colloidal interactions. These forces regulate the formation of complex two-dimensional structures, which can be exploited in a number of applications of technological interest; optical devices, catalysis, molecular electronics or emulsions stabilization. From a fundamental viewpoint and typical for colloidal systems, nanoparticles and microparticles at interfaces are ideal experimental and theoretical mo…

Condensed matter physicsChemistryNanoparticleMolecular electronicsThermal fluctuationsCondensed Matter PhysicsCondensed Matter::Soft Condensed Mattersymbols.namesakeChemical physicsPhase (matter)symbolsMagnetic nanoparticlesDLVO theoryParticleGeneral Materials Sciencevan der Waals forceJournal of physics. Condensed matter : an Institute of Physics journal
researchProduct

Molecular coupling of light with plasmonic waveguides.

2007

We use molecules to couple light into and out of microscale plasmonic waveguides. Energy transfer, mediated by surface plasmons, from donor molecules to acceptor molecules over ten micrometer distances is demonstrated. Also surface plasmon coupled emission from the donor molecules is observed at similar distances away from the excitation spot. The lithographic fabrication method we use for positioning the dye molecules allows scaling to nanometer dimensions. The use of molecules as couplers between far-field and near-field light offers the advantages that no special excitation geometry is needed, any light source can be used to excite plasmons and the excitation can be localized below the d…

DiffractionMaterials scienceFOS: Physical sciencesPhysics::Optics02 engineering and technology01 natural sciences7. Clean energyMicrometreOpticsPhysics - Chemical Physics0103 physical sciencesPolaritonPhysics::Chemical Physics010306 general physicsPlasmonChemical Physics (physics.chem-ph)business.industrySurface plasmonMolecular electronics021001 nanoscience & nanotechnologySurface plasmon polaritonAtomic and Molecular Physics and Optics0210 nano-technologybusinessExcitationOptics (physics.optics)Physics - OpticsOptics express
researchProduct

Dynamic Aspects of Quasi-Particle Transfer in Molecular Electronic Devices

1993

Abstract The importance of the dissipative quantum dynamics of molecular systems for possible future device applications is emphasized. The necessity to study in detail the respective quasi-particle transfer phenomena is discussed. As a specific example charge transfer in a molecular dimer and a molecular chain is investigated in order to demonstrate how the quantum dynamical features can be controlled by different intrinsic nonlinearities.

Electron transferChemistryComputational chemistryChemical physicsQuantum dynamicsDissipative systemMolecular electronicsMoleculeCharge (physics)ElectronicsCondensed Matter PhysicsQuantumMolecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals
researchProduct

Highly selective chemical sensing in a luminescent nanoporous magnet.

2012

Among the wide variety of properties of interest that a given material can exhibit, luminescence is attracting an increasing attention due to its potential application in optical devices for lighting equipment and optical storage, [ 1a − c] optical switching, [ 1d ,e] and sensing. [ 1f − i ] At this respect, many scientists, working in the multidisciplinary fi eld of the materials science, have directed their efforts to the obtention of luminescent materials with potential sensing applications. For instance, sensitive and selective detection of gas and vapor phase analytes can result specially interesting because of the variety of applications that can be found in many different fi elds. A …

FabricationMaterials scienceNanotechnologyOptical storagePhotochemistryOptical switchNanoporesMolecular recognitionGeneral Materials ScienceManganesebusiness.industryNanoporousMechanical EngineeringMolecular electronicsCarbon DioxideSpectrometry FluorescenceMechanics of MaterialsMagnetsSolventsQuantum TheoryMetal-organic frameworkAdsorptionGasesPhotonicsbusinessMethaneCopperAdvanced materials (Deerfield Beach, Fla.)
researchProduct

Why Bring Organic and Molecular Electronics to Spintronics

2015

Organic spintronics field is an emerging field at the frontier between organic chemistry and spintronics. Exploiting the peculiarity of these two fields, it combines the flexibility, versatility and low production cost of organic materials with the nonvolatility, spin degree of freedom and beyond CMOS capabilities offered by spintronics. Before starting the discussion on the organic spintronics field, in this chapter will be provided a brief introduction on organic and molecular electronics and the specificities of molecules. This will help to understand the advantages that molecular systems can bring to spintronics.

Flexibility (engineering)EngineeringBeyond CMOSSpintronicsbusiness.industryProduction costMolecular electronicsNanotechnologyMolecular systemsbusiness
researchProduct